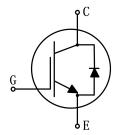


### 1200V 75A Trench and Field Stop IGBT

#### JJT75N120HA

## **Key performance:**


- $V_{\rm CE} = 1200 \rm V$
- $I_{\rm C}=75{\rm A}@T_{\rm C}=100^{\circ}{\rm C}$
- $V_{\text{CE(sat)}}=2.0\text{V}$

#### **Features:**

- Trench and field-stop technology
- Easy parallel switching capability
- Low  $V_{\text{CEsat}}$
- High ruggedness performance
- RoHS compliant

# TO-247PLUS





## **Applications:**

- Solar converters
- On-Board Charger

### Package parameters

| Туре        | Marking  | Package    | Packaging Method |
|-------------|----------|------------|------------------|
| JJT75N120HA | Т75120НА | TO-247PLUS | Tube             |



# **Maximum ratings**

| Symbol             | Parameter                                                | Values      | Unit |
|--------------------|----------------------------------------------------------|-------------|------|
| $V_{\mathrm{CES}}$ | Collector-emitter voltage                                | 1200        | V    |
| $V_{ m GES}$       | Gate-emitter voltage                                     | ±20         | V    |
| ī                  | Continuous collector current (T <sub>C</sub> =25°C)      | 150         | A    |
| $I_{ m C}$         | Continuous collector current (T <sub>C</sub> =100°C)     | 75          | A    |
| $I_{\mathrm{CM}}$  | Pulsed collector current, $t_p$ limited by $T_{vjmax}$   | 300         | A    |
| $I_{ m F}$         | Diode continuous forward current (T <sub>C</sub> =100°C) | 75          | A    |
| $I_{ m FM}$        | Diode maximum current, $t_p$ limited by $T_{vjmax}$      | 150         | A    |
| n                  | Power dissipation ( $T_{\rm C}$ =25°C)                   |             | W    |
| $P_{tot}$          | Power dissipation ( $T_{\rm C}$ =100°C)                  | 728         | W    |
| $T_{ m vj}$        | Operating junction temperature range                     | -40 to +175 | °C   |
| $T_{ m stg}$       | Storage temperature range                                | -55 to +150 | °C   |

#### Thermal characteristics

| Symbol           | D                                              | Val | Unit |      |
|------------------|------------------------------------------------|-----|------|------|
|                  | Parameter                                      |     |      | Max. |
| $R_{ m th(j-c)}$ | Thermal resistance, junction to case for IGBT  |     | 0.10 | K/W  |
| $R_{ m th(j-c)}$ | Thermal resistance, junction to case for Diode |     | 0.44 | K/W  |
| $R_{ m th(j-a)}$ | Thermal resistance, junction to ambient        | -   | 40   | K/W  |



## **Electrical characteristics of IGBT** $(T_{vj}=25^{\circ}\text{C} \text{ unless otherwise specified})$

## Static characteristics

| 6 1 1                 | D                                    | 7D 4 114                                                            | Values |      |      | II. *4 |
|-----------------------|--------------------------------------|---------------------------------------------------------------------|--------|------|------|--------|
| Symbol                | Parameter                            | Test condition                                                      | Min.   | Тур. | Max. | Unit   |
| $BV_{\rm CES}$        | Collector-emitter breakdown voltage  | $V_{\rm GE} = 0 \text{V}, I_{\rm C} = 250 \mu \text{A}$             | 1200   | -    | -    | V      |
| $I_{\mathrm{CES}}$    | Collector-emitter leakage current    | $V_{\rm CE}$ =1200V, $V_{\rm GE}$ =0V                               | -      | -    | 100  | μΑ     |
| $I_{ m GES}$          | Gate leakage current, forward        | $V_{\rm GE} = 20  \text{V}, \ V_{\rm CE} = 0  \text{V}$             | -      | -    | 100  | nA     |
|                       | Gate leakage current, reverse        | $V_{\rm GE}$ =-20V, $V_{\rm CE}$ =0V                                | -      | -    | -100 | nA     |
| $V_{\mathrm{GE(th)}}$ | Gate-emitter threshold voltage       | $V_{\mathrm{GE}} = V_{\mathrm{CE}}, I_{\mathrm{C}} = 1 \mathrm{mA}$ | 5.2    | 5.6  | 6.0  | V      |
| V <sub>CE(sat)</sub>  | Collector-emitter saturation voltage | $V_{\rm GE} = 15 \text{ V}, I_{\rm C} = 75 \text{A}$                | -      | 2.0  | -    | V      |
|                       |                                      | $V_{\text{GE}}$ =15V, $I_{\text{C}}$ =75A, $T_{\text{vj}}$ =175°C   | -      | 2.6  | -    | V      |

## Dynamic characteristics

| Symbol             | Parameter                    | Test condition                                                | Values |       |      | TT .*4 |
|--------------------|------------------------------|---------------------------------------------------------------|--------|-------|------|--------|
|                    |                              |                                                               | Min.   | Тур.  | Max. | Unit   |
| $C_{\mathrm{ies}}$ | Input capacitance            | $V_{\rm CE}$ =30V                                             | 1      | 18650 | 1    | pF     |
| $C_{ m oes}$       | Output capacitance           | $V_{\text{CE}} = 30V$ $V_{\text{GE}} = 0V$ $f = 1 \text{MHz}$ | -      | 340   | -    | pF     |
| $C_{ m res}$       | Reverse transfer capacitance |                                                               | -      | 80    | -    | pF     |
| $Q_{ m g}$         | Total gate charge            | $V_{CC}$ =960V<br>$V_{GE}$ =15V<br>$I_C$ =75A                 | -      | 560   | -    | nC     |



## Switching characteristics

| 6 1 1           | Parameter Test condition | T. 4 114                                                                               | Values |      |      | <b>T</b> T •4 |
|-----------------|--------------------------|----------------------------------------------------------------------------------------|--------|------|------|---------------|
| Symbol          |                          | Min.                                                                                   | Тур.   | Max. | Unit |               |
| $t_{ m d(on)}$  | Turn-on delay time       |                                                                                        | -      | 138  | -    | ns            |
| $t_{ m r}$      | Rise time                | $V_{\rm CC}$ =600V                                                                     | -      | 120  | -    | ns            |
| $t_{ m d(off)}$ | Turn-off delay time      | $V_{\text{GE}} = 0/15 \text{V}$ $I_{\text{C}} = 75 \text{A}$                           | -      | 676  | -    | ns            |
| $t_{ m f}$      | Fall time                | $R_{\rm G}=10\Omega$                                                                   | -      | 71   | 1    | ns            |
| $E_{ m on}$     | Turn-on energy           | Inductive load                                                                         | -      | 7.7  | -    | mJ            |
| $E_{ m off}$    | Turn-off energy          |                                                                                        | -      | 3.7  | -    | mJ            |
| $E_{ m ts}$     | Total switching energy   |                                                                                        | -      | 11.4 | -    | mJ            |
| $t_{ m d(on)}$  | Turn-on delay time       |                                                                                        | -      | 124  | -    | ns            |
| $t_{ m r}$      | Rise time                |                                                                                        | -      | 121  | -    | ns            |
| $t_{ m d(off)}$ | Turn-off delay time      | $V_{\rm CC}$ =600V<br>$V_{\rm GE}$ =0/15V                                              | -      | 691  | -    | ns            |
| $t_{ m f}$      | Fall time                | $I_{\rm C}$ =75A<br>$R_{\rm G}$ =10 $\Omega$<br>Inductive load<br>$T_{\rm vj}$ =175 °C | -      | 82   | -    | ns            |
| $E_{ m on}$     | Turn-on energy           |                                                                                        | -      | 8.4  | -    | mJ            |
| $E_{ m off}$    | Turn-off energy          |                                                                                        | -      | 4.1  | -    | mJ            |
| $E_{ m ts}$     | Total switching energy   |                                                                                        | -      | 12.5 | -    | mJ            |



## **Electrical characteristics of Diode** $(T_{vj}=25^{\circ}\mathbb{C} \text{ unless otherwise specified})$

| 6 1 1        | D4                                  | T- 4 124                                                     | Values |      |      | Unit |
|--------------|-------------------------------------|--------------------------------------------------------------|--------|------|------|------|
| Symbol       | Parameter                           | Test condition                                               | Min.   | Тур. | Max. | Unit |
| 17           |                                     | $I_{\rm F}$ =75A                                             | -      | 2.1  | -    | V    |
| $V_{ m F}$   | Diode forward voltage               | $I_{\rm F}=75{\rm A},\ T_{\rm vj}=175{\rm ^{\circ}C}$        | -      | 1.8  | -    | V    |
| $t_{ m rr}$  | Diode reverse recovery time         | $V_{\rm R}$ =600V                                            | -      | 163  | -    | ns   |
| $I_{ m rrm}$ | Diode peak reverse recovery current | $I_{\rm F}$ =75A                                             | -      | 20   | -    | A    |
| $Q_{ m rr}$  | Diode reverse recovery charge       | $di_{\rm F}/dt$ =-600A/ $\mu$ s                              | -      | 2046 | -    | nC   |
| $t_{ m rr}$  | Diode reverse recovery time         | $V_{\rm R}$ =600V $I_{\rm F}$ =75A $di_{\rm F}/dt$ =-600A/μs | -      | 278  | -    | ns   |
| $I_{ m rrm}$ | Diode peak reverse recovery current |                                                              | -      | 39   | -    | A    |
| $Q_{ m rr}$  | Diode reverse recovery charge       | <i>T</i> <sub>vj</sub> =175 ℃                                | -      | 6679 | -    | nC   |



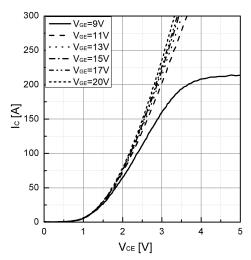



Fig 1. Typical output characteristic ( $T_{vj}$ =25°C)

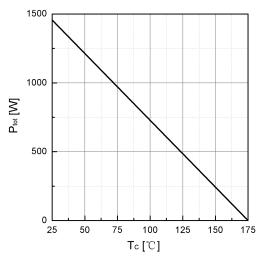



Fig 3. Power dissipation as a function of  $T_C$ 

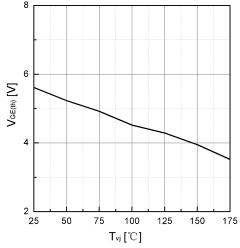



Fig 5. Typical  $V_{\text{GE(th)}}$  as a function of  $T_{\text{vj}}$  ( $I_{\text{C}}=1\,\text{mA}$ )

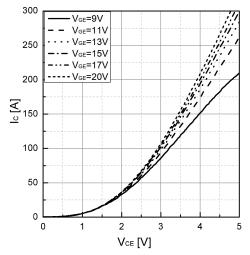



Fig 2. Typical output characteristic( $T_{vj}$ =175°C)

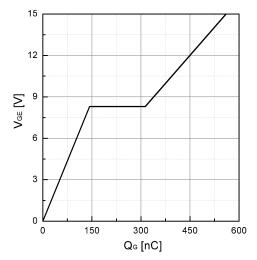



Fig 4. Typical Gate charge

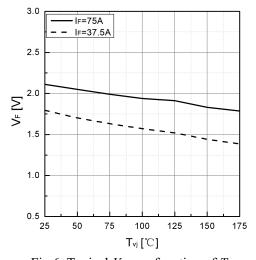



Fig 6. Typical  $V_F$  as a function of  $T_{vj}$ 



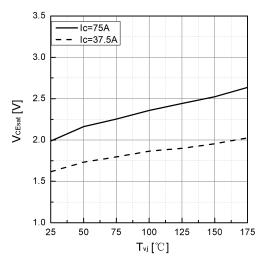



Fig 7. Typical  $V_{\text{CEsat}}$  as a function of  $T_{\text{vj}}$ 

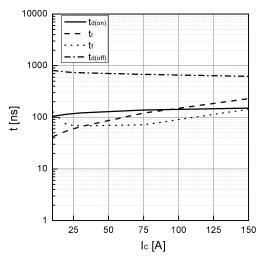



Fig 9. Typical switching time as a function of  $I_{\rm C}$ 

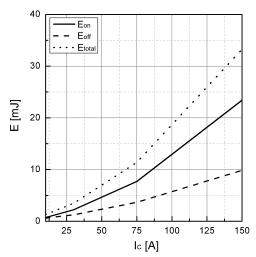



Fig 11. Typical switching energy losses as a function of  $I_{\mathbb{C}}$ 

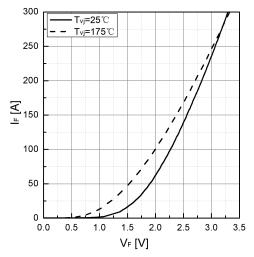



Fig 8. Typical  $I_F$  as a function of  $V_F$ 

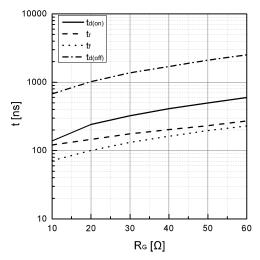



Fig 10. Typical switching times as a function of  $R_G$ 

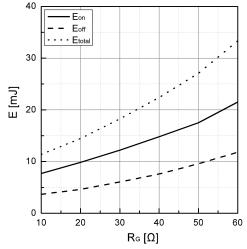



Fig 12. Typical switching energy losses as a function of  $R_G$ 



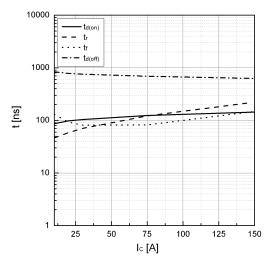



Fig 13. Typical switching time as a function of  $I_{\rm C}$ 

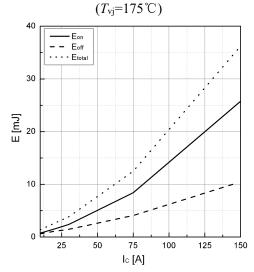



Fig 15. Typical switching energy losses as a function of  $I_{\mathbb{C}}(T_{vi}=175^{\circ}\mathbb{C})$ 

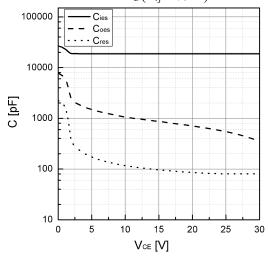



Fig 17. Typical capacitance as a function of  $V_{\rm CE}$  (f=1Mhz,  $V_{\rm GE}$ =0V)

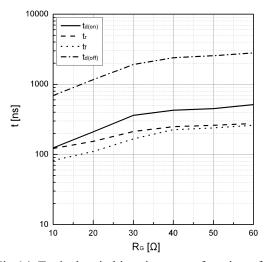



Fig 14. Typical switching times as a function of  $R_{\rm G}$ 

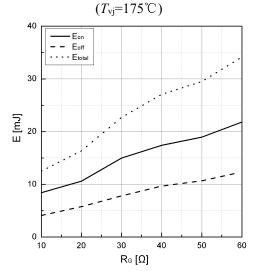



Fig 16. Typical switching energy losses as a function of  $R_G(T_{vj}=175^{\circ}C)$ 

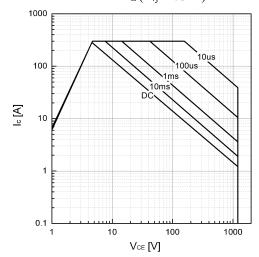



Fig 18. Safe operating area



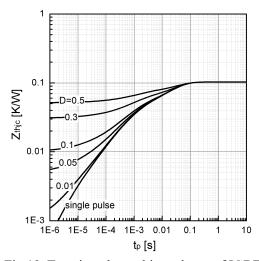
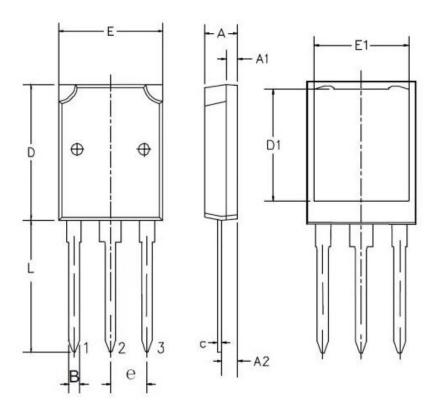




Fig 19. Transient thermal impedance of IGBT



# Package dimension

### TO-247PLUS



| Ref. | Min.(mm) | Typ.(mm) | Max.(mm) |
|------|----------|----------|----------|
| A    | 4.92     | 5.00     | 5.08     |
| A2   | 2.27     | 2.35     | 2.43     |
| A1   | 1.92     | 2.00     | 2.08     |
| В    | 1.16     | 1.20     | 1.24     |
| С    | 0.56     | 0.60     | 0.64     |
| D    | 20.70    | 20.90    | 21.1     |
| Е    | 15.80    | 15.90    | 16.00    |
| E1   | 13.92    | 14.02    | 14.12    |
| e    | 5.34     | 5.44     | 5.54     |
| L    | 19.80    | 20.00    | 20.20    |



#### **Revision history**

| Date       | Revision | Changes                 |
|------------|----------|-------------------------|
| 2025-01-26 | Rev. 1.2 | Add SOA and Rth graph   |
| 2025-02-17 | Rev. 1.3 | Modify the package size |
| 2025-03-03 | Rev. 2.0 | Replace sketch          |

#### **Disclaimer**

PLEASE NOTE - Jiangsu JieJie Microelectronics Co., Ltd ("JJM") reserves the right to amend, correct, modify and enhance the product and/or this document at any time without prior notice. If you intend to purchase this product, please obtain the latest information available before placing your order. The sale of JJM products is governed by JJM's prevailing terms and conditions at the time of purchase and purchasers are solely responsible for the selection and use of the products with no liability on JJM's part to supply application assistance or customization. Purchase of JJM products does not grant the purchaser license, express or implied, to JJM's intellectual property. Any warranties provided with JJM products are null and void upon resale unless accompanied by the information set forth herein in its entirety. The JJM name and logo are registered trademarks of Jiangsu JieJie Microelectronics Co., Ltd. This document supersedes all previous versions. ©2025 JJM - All rights reserved